
cally with time; G, Q, and S, dimensionless variables that determine the velocity, strain 
and shear stress perturbations respectively; D, M, B, and W, dimensionless parameters that 
determine the values of the bulk elasticity, the dilatational viscosity, the shear visco- 
sity, and the relaxation time respectively; A = a2/ay2k, Laplacian; f(ns eigenfunctions 
of the Laplacian; hn,s eigenvalues of the Laplacian determined from the boundary conditions 
(n is an index which numbers the values of h in increasing order, s is the spherical har- 
monic index); Jr(z), Bessel function of the first kind; Ys @), surface spherical harmo- 
nic; Ps ~), an associated Legendre function of the first kind; g(n,s q(n,s s(n,s 
time parts of the harmonics of the G, Q, S, value spectrum; zl, z2, and z3, auxiliary dimen- 
sionless parameter; A, amplitude of the velocity perturbation fluctuations; ~, phase of the 
fluctuations; A 0 and ~0, initial values of the amplitude and phase; C(8), a variable corres- 
ponding to a monotonic mode; ~(T), a variable that plays the part of frequency in the "gen- 
erating" solution. 
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RELAXATION OF CONCENTRATION INHOMOGENEITIES 

IN NONIDEAL SOLUTIONS 

P. P. Bezverkhii, M. Ya. Golota, 
V. S. Gurvich, and E. V. Matizen 

UDC 532.72 

Numerical solutions of the nonlinear diffusion equation are obtained for non- 
ideal solutions satisfying an equation of state of the Van der Waals-Landau 
average field type. The results are compared with experiment. 

The study of the processes of relaxation of concentration inhomogeneities in binary 
gaseous solutions in the region of states in which significant nonideality has a pronounced 
influence on the diffusion owing to the proximity of the critical line of the mixture is a 
complex problem involving the nonlinearity of the equations describing these processes. Par- 
ticularly difficult to solve experimentally is the inverse problem of regenerating the inter- 
diffusion coefficient from data on the dependence of the concentration on time and the co- 
ordinates. Further obstacles arise as a result of the limited accuracy of measurement of 
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TABLE I. Constants of the Equations of State (2), (3), and (4) 

Ar--CO~ (2) (3) Ne--CO~ (4) 

m 3 (kmole)  --1" 

(a2, MPa'm 6 (kmole)-i 
CO~, Ibm, m 3 ( k m o l e ) -  i 

~R, dimensionless 
a12 , MPa'm 6 (kraole)-3 
blz, m 3 (kmole)- I 

1,062.10 -Jr 
25,11.10 -3 

3,195,10-1 
35,9.10 -~ 

1,769.10 -1 
31,0.10 -~ 

81,36 
25,11.10 -~ 

79,44 
30,3.10 -3 

0,7318 

12,33 
18,5.10 -3 

AN 
A. r 
A No 
A,r v 
ADv73 

6,1045 
7,0397 

~10,802 
--6,969 
--0,32015 

the small concentration changes for which it is possible to disregard the nonlinear terms 
in the diffusion equation. Thus, for example, differences in N of 3-5%, which are fairly 
small away from the critical point and permit the accurate use of the linear diffusion 
equation in compressed gases, may prove large when T % 10-3-10 -2. With further decrease 
in the N differentials we are faced with the problem of sharply increasing the accuracy of 
the concentration difference measurements for all process times. 

The average field theory has been used to work out many problems of the application of 
the linear diffusion model to solutions in a highly nonideal state. In this article, on 
the basis of the theory we extend the description of the characteristics of diffusion pro- 
cesses near the critical line with the aid of a nonlinear equation. We did not set our- 
selves the task of obtaining the closest possible agreement between the calculations and 
actual experiments, since our attention was concentrated on the important features of the 
diffusion process. We therefore made certain simplifications, in particular, by consider- 
ing only the one-dimensional case; as the equations of state we chose equations of the Van 
der Waals-Landau type. In accordance with the results of our experiments, it was assumed 
that the component mobility bl W in a mixture with a concentration of up to several mole 
percent behaves in the same way as in an ideal gas mixture. We studied solutions with 
small N, since it is precisely in these that the characteristics associated with nonideally 
are most strongly expressed near the critical vaporization point. 

The results of diffusion measurements in Ar-C02, Ne-CO=, and 4He-D2 [1-4] have shown 
that over a fairly broad region of the nonideal state of the gas solution the decisive in- 
fluence on the diffusion processes is that of the thermodynamic factor (8~I/8N) p T and the 
function n(N) for regular behavior of bl W, when the relative change in bl W is small com- 
pared with the change in (a~i/aN)p. T (D W and bl W have been written in the reference sys- 
tem moving with the number-average velocity W). 

The region of values of the parameters of the equation of state in which this approach 
is not applicable was estimated in [2-4]. It is primarily the region of the liquid state 
(n/n c > 1.5) and, moreover, the region in the immediate vicinity of the critical point of 
vaporization of binary solutions, where it is no longer possible to consider that the 0n- 
sager coefficient varies only slightly. Thus, in the general case D W can be represented 
by two terms [4]: 

\ ON ) p , r  6 ~ r  c , ( 1 )  

where r c = r0T -v. 

In regions remote from the critical point the dominant term in expression (i) is the 
first term, but in a region fairly close to the critical point the second term predominates 
and determines the diffusion rate. Estimates [2, 5] based on accurate data on the equation 
of state in the critical region show that for Ar-CO2 and Ne-CO 2 solutions the influence 
of the second term in expression (i) is significant only at �9 < 10 -3 , when N ~ 0.03 mole 
fraction. The experiments were carried out at T ~ 10-a-10-2(N = 0.03-0.05 mole fraction), 
which made it possible to take into account only the first term in (i). 

In view of the almost total lack of accurate experimental p-v-T-N data for binary 
mixtures near the critical point and lines of phase separation we also lack the equations 
of the mixtures in that region, with a few exceptions such as the Leontovich-Rozen equations 
[6, 7] for Ar-CO2 [8], Ne-C02 [9] and C~H 8-C2H6 [i0], and the scaling equations for 3He-- 
4He [ii], Ne--CO 2 [12] and Ar-CO2 [13]. The scaling equations are complex and using them 
to obtain the necessary thermodynamic derivatives calls for rather complicated numerical 
calculations. However, for exploring the behavior, in nonideal mixtures, of thermodynamic 
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derivatives with strong singularities, such as \ON ]p,r' ~ p,r ' and [ONZ/P,T 

cient to use simpler equations of state of the Van der Weals-Landau type, since for our pur- 
poses the values of the critical susceptibility index of the fluctuation theory and average- 
field type theory differ unimportantly, as 1.2 and 1 respectively. In this study we have 
used the Van der Weals equation of state 

p = RT (v -- b) -- a/v ~ (2) 

or the modified Berthelot equation 

p : k [RT/(v .... b) - -  a/(TvZ)], (3 )  

which make it possible to obtain the exact form of ~i and ~2. Here, k is a matching cons- 
tant, a = aiN 2 + 2al2N(l -- N) + a2(l -- N)2; b = bin 2 + 2b12N(l - N) + b2(l - N) 2 

For the same purposes we also used an equation of state, more accurate in the critical 
region adjacent to the critical point of the pure component (C02), in the form of a Landau 
expansion for the mixtures Ar-CO 2 [8] and Ne-CO 2 [9] 

P - - P c  = ANN -k A~ �9 + ANoNAv -k A ~ A v  + A~voAv 3, (4 )  
Pc 

where  Av = ( v  - V c ) / V c ,  Pc = 7 .386  MPa, T c = 304 .15  K, v c = 9 .40406  • 10 -2 m3/kmole  a r e  
t h e  c r i t i c a l  p a r a m e t e r s  o f  t h e  CO 2 [ 9 ] .  The c o n s t a n t s  o f  t h e  e q u a t i o n s  (2 )  and (3 )  we re  
o b t a i n e d  f rom t h e  d a t a  on A r - C O  2 [ 8 ] .  T h e s e  c o n s t a n t s  a r e  g i v e n  in  T a b l e  1. Fo r  Eqs .  (2 )  
and (3 )  t h e y  were  d e t e r m i n e d  by a l e a s t  s q u a r e s  a n a l y s i s  [ 1 4 ] ,  w h i l e  f o r  Eq. (4 )  t h e y  were  
so  s e l e c t e d  t h a t  t h e  c r i t i c a l  c u r v e  f o r  t h e  m i x t u r e  N e - C O 2 ,  c a l c u l a t e d  u s i n g  ( 4 ) ,  c o i n -  
c i d e d  w i t h  t h e  e x p e r i m e n t a l  c u r v e  [ 2 ] .  

The rms e r r o r  o f  a p p r o x i m a t i o n  o f  t h e  A r - C 0 2  d a t a  by  Eq. (2 )  i s  1 .5  b a r ,  t h e  c o r r e s -  
p o n d i n g  f i g u r e  f o r  Eq. (3 )  b e i n g  0 . 2 8  b a r .  Fo r  c o m p a r i s o n  we n o t e  t h a t  a p p r o x i m a t i o n  by  
a b r o a d e r ,  a s  com pa red  w i t h  ( 4 ) ,  e x p a n s i o n  w i t h  11 m a t c h i n g  p a r a m e t e r s  g i v e s  an e r r o r  o f  
0 . 0 9  b a r  [ 8 ] .  Us ing  Eqs .  ( 2 ) ,  ( 3 ) ,  and ( 4 ) ,  i t  i s  p o s s i b l e  t o  o b t a i n  e x p r e s s i o n s  f o r  ~1 
and ~= and to determine the surface of the phase separation region and the critical line 
of the mixture [14]. 

Taking into account the fact that in the region of applicability of these equations of 
state D W = bIWN(8~I/SN)D,T , where bl W = D0/RT , and D~ is the diffusion coefficient of the 
ideal gas mixture, which can be calculated from the Enskog-Chapman equation or measured [4], 
we obtain 

DW lDo = (NIRT) (O~{aN)p, r. (5 )  

In order to enable the results of analyzing the behavior of n(N) and \aN/ p.m for p, T = 

const to be applied to different binary gas systems, we use the law of corresponding states 
and reduce Eq. (2), which reflects with qualitative accuracy the behavior of a nonideal 
Ar-C02 mixture, to the dimensionless form: 

P* = 8T*/z--3a*/v*2; z : 3 v * - - b * ,  (6 )  

where  a* = a / a s ;  b* = b / b s ;  p* = P / P c ,  T* = T / T c ;  v* = v / ( 3 b = ) ;  Pc = a = ( 2 7 b ~ ) ;  T c = 8a=/ 
(27Rb2), and the index 2 relates to the CO=. Then the dependence of (3~I/SN)p,N on N, v*, 
and T* takes the form [4]: 

N ( a~,. ~ = 1 N ( 1 - - N ) ~  (ap*/aN)~,, 8T* + _ _ j .  
(7) RT \ aN ]p , r  T *~ - ( a p * / a v * ) r , N  z z 

Here  b * '  = dbe /dN;  b*"  = dSb*/dN=;  a * "  = dSa~/dN 2. 

For  Eq. (4 )  ( S V l / S N ) p , T  , i n  a c c o r d a n c e  w i t h  [ 6 ] ,  may be r e p r e s e n t e d  in  t h e  f o r m :  

RT k ON ; v,r = 1 + A#~N q- A~z  q- 3 A ~ A v  ~" (8 )  

Compar ing  t h e  b e h a v i o r  o f  c u r v e s  1 and 2 in  F i g .  1, we n o t e  t h e  e x i s t e n c e  o f  a minimum 
o f  ( S O x / S N ) p , T  f o r  b o t h  m ode l s  and a s h a r p  i n c r e a s e  in  t h e  d e n s i t y  o f  t h e  m i x t u r e  a t  v a l u e s  
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Fig. I. Density n/n c (a) and diffusion coeffi- 
cient DW/D0 = N/RT(8~I/SN)p, T (b) as functions 
of the concentration (mole %): i) calculation 
for a Ar-C02 mixture from Eqs. (6) and (7) for 
T* = 0.99 and p* = 1.04; 2) calculation for a 
Ne-CO 2 mixture from Eqs. (4) and (8) for p - 
Pc = 1.625 MPa; T - T c = -0.3 K. 

of N corresponding to the region of that minimum. An analogous minimum in the region of the 
critical point of the mixture is also observed in the density dependence of DW/D0 when N = 
const, T = const [4, 14]. Attention is drawn to the experimental detection of minima in the 
dependence of the product pD W on p in a Ar-CO 2 solution in the critical region [i] and the 
decrease in D W as the boundary curve is approached along the isobars in the system ~He-D 2 
[3], which also corresponds to the behavior of (8~i/SN)p, T according to the model. 

In order to use Eqs. (7) and (8) correctly, it is necessary to find the phase separation 
region. The boundary curve is determined from the equations ~l s = ~i n, ~2 s = ~2 n, where Ul 
and ~2 are calculated, for example, from equations taken from [4]. Calculation of the phase 
separation boundary for T* = 0.99 and equation of state (6) and for T - T c = -0.3 K and Eq. 
(4) showed that the curves in Fig. i pass through the single-phase region. 

A system of nonlinear equations describing the relaxation of an initial concentration 
inhomogeneity under the conditions Vp = 0 and VT = 0 in a binary mixture was first proposed 
in [6] for an essentially nonideal state of the gas mixture in the critical region of vapo- 
rization: 

ON ON 0 ( ON ) On + O__O_(nW)=O ' n 0"-~ -t- n W -  = nD w.,, 
bx ' --2f o ,  

( 9 )  

n = n(N,  p = const, T = const), D ~ = Nb~(O~JON)o.r. 

For investigating diffusion in Ne-CO2, Ar-CO2, and 4He-D2 solutions in the nonideal 
state in the neighborhood of the critical points of CO 2 and D 2 we used a capillary opening 
at one end into a large reservoir containing a solution at constant concentration. The 
model problem corresponding to this method consists of solving system (9) for the following 
initial and boundary conditions: capillary of length L closed at one end (x axis directed 
towards the open end) and full, at the initial instant t = 0, of a mixture of uniform con- 
centration N o . At the open end of the capillary the mixture concentration N(L, t) = N I is 
kept constant. Experimentally, this corresponds to the connecting of the end of the capil- 
lary (x = L) at time t = 0 to a reservoir containing a mixture of composition NI, whose 
volume is much greater than that of the capillary. The pressure and temperature in the re- 
servoir and the capillary are the same. With the passage of time the initial concentration 
step is eroded, and in the experiments we measured either the average composition of the 
mixture in the capillary N(t) (after disconnecting it from the reservoir for time t) or 
the change of concentration at the closed end of the capillary N(0, t). Thus, for the ca- 
pillary method the boundary conditions are written in the form: 

N(x, 0)=N0 when t=0, N(L, t)=N1 when x=L, (i0) 

0N(0, t)/Ox= 0andW(0, t) = 0when X = 0. 

As the initial difference N O - N l tends to zero and as 8N/Sx + 0 in the diffusion pro- 
cess for a real mixture it is possible to assume that n and D W are practically independent 
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# 0 2 0  ' ' ' ' q..qf ' ' ' ~ / p  x/g~ 0"02 2 

Fig. 2. Solutions of Eq. (17) using the Van der Waals 
equation of state (6) and DW/D0 from (7) for T* = 0.99 
and p* = 1.04: a, b) solutions on the interval 0.02 
N < 0.06 mole fraction. Broken curves - solutions ob- 
taTned using (6) and DW/D0 ~ i; continuing curves - 
solutions obtained using (6) and (7) (see Fig. i, 
curves i); a) concentration distribution along capil- 
lary for the following values of t': i) 0.0; 2) 0.06; 
3) 0.14; 4) 0.20; 5) 0.30; 6) 0.35; 7) 0.40; 8) 0.45; 
9) 0.50; b) dependence of in u(0, t') - ul/(u 0 - u I) 
(i) and In N(0, t') - NI/(N 0 - N I) (2) on t' at x' = 0; 
c, d) solutions on the intervals of N: broken curves - 
0.038 < N < 0.08 mole fraction; continuous curves - 
0.005 < N < 0.036 mole fraction; c) concentration distri- 
bution along capillary for the following values of t': 
1) 0.0; 2) 0.06; 3) 0.14; 4) 0.30; 5) 0.55; 6) 0.60; d) 
dependence of In u(0, t') - ul/(u 0 - u) (I) and In N(0, 
t') - NI/(N 0 - N I) (2) on t' at the closed end of the 
capillary. 

of N. For real mixtures in the region of states remote from the phase equilibrium surface 
and the critical line of the mixture the functions n(N) and DW(N) are smooth and vary only 
slightly, which makes it possible to consider a small difference N o - N I of the order of i0- 
20 mole %. In this case Eqs. (9) are linearized and the problem reduces to the solution of 
the Fick equation, valid for diffusion in a rarefied mixture: 

aN = D  w O~N (11)  
Ot ax ~ 

I n  t h e  r e g i o n  o f  e s s e n t i a l l y  n o n i d e a l  b e h a v i o r  o f  t h e  s o l u t i o n  ( s e e  F i g .  1) n(N) and DW(N) 
v a r y  s h a r p l y ;  h e r e  o n l y  an i n i t i a l  d i f f e r e n c e  o f  t h e  o r d e r  o f  0 .1  mole  % can  be  c o n s i d e r e d  
s m a l l  enough  t o  p e r m i t  t h e  u s e  o f  Eq. ( 1 1 ) .  I n  t h i s  c a s e ,  h o w e v e r ,  t o  o b t a i n  D W w i t h  t h e  
same e r r o r  i t  i s  n e c e s s a r y  c o n s i d e r a b l y  t o  i m p r o v e  t h e  a c c u r a c y  o f  m e a s u r e m e n t  o f  N in  t h e  
experiments, which is not easy. Therefore the initial differences in N of 3-5 mole % crea- 
ted in our measurements were sometimes found to be rather large, which made it necessary 
to employ the nonlinear system (9). 

Solving system (9) for boundary conditions (i0) is fairly complicated, even by numerical 
methods, owing to its nonlinearity and the complex form of the functions DW(N) and n(N) even 
for the simplest equations of state (2) and (4). Accordingly, we first transform Eqs. (9), 
reducing them to dimensionless form by means of the change of variables x' = x/L, t' = Dot/ 
L 2, n* = n/nc, W* = WL/D 0 and eliminating from the first two equations the derivatives with 
respect to t'. We obtain the equation for the velocity 
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Fig. 3. Results of calculating the integral I (14) from the 
solutions of Eq. (17) in the case of ~ig. 2c (notation same 
as in Fig. 2c) (a) and the calculated dependence of DW/D0 
~(n*N)/Sx' (15) on x' for the values of t': i) 0.06; 2) 0.14; 
3) 0.20; 4) 0.30; 5) 0.55 (b). 

- ~ n *  . 

Ox' n *~ \ ON ]p,T OX' Do Ox' (12) 

Taking i n t o  account  t he  boundary c o n d i t i o n  W*(0, t ' )  = 0, we can w r i t e  (12) in  t he  form: 

D i ( On* I ON Z 1, (13)  
W* (x', t ' ) -  Do n* ~ ON ]v,T OX' n*---N- 

where the integral I is given by the expression 

' I = n*N ~ n* (N) (14) 
0 

Substituting the number-average velocity W* from (13) in system (9) and transforming it 
using (5), we obtain the nonlinear equation for the function u = n*N (number of moles of 
first component per unit volume) 

Ot ~ -- Ox ----7- O N  )p,r Ox' + 1  , (15) 

a complex integrodifferential equation of the diffusion process in a nonideal solution which 
in the general case we could not solve, even numerically. We will therefore assume that in 
(13) the first term on the right is much greater than the second. Evaluating the integral 
in (13) by the mean value theorem, we find that this is possible provided that 

AN 0 [In Or* 

where AN i s  t he  change in  N on the  i n t e r v a l  (0,  x ' ) .  For f a i r l y  smal l  AN t h i s  c o n d i t i o n  can 
be s a t i s f i e d  i f  t he  d e r i v a t i v e  (a2v*/aN2)p,  T does not  have a s i n g u l a r i t y .  

S a t i s f a c t i o n  of  i n e q u a l i t y  (16) or the  smal lness  of  t he  i n t e g r a l  I in  t he  exp re s s ion  f o r  
t he  number-average v e l o c i t y  (13) means t h a t  t he  l a b o r a t o r y  c o o r d i n a t e  system in which the  
c a p i l l a r y  i s  a t  r e s t  c o i n c i d e s  w i th  t he  volume-average  frame of  r e f e r e n c e .  I f  I in  (13) 
cannot be neglected, then in the case of a nonideal mixture none of the reference systems 
used can be made to coincide with the laboratory coordinate system. However, if condition 
(16) is satisfied, Eq. (15) can be written in the form: 

Ou 0 ( D r Ou .) (17) 
Ot" Ox' Do Ox' ' 

which is suitable for solution by ordinary numerical methods on a computer. 

The nonlinear diffusion equation (17) with initial and boundary conditions (i0) was in 
fact solved for the density of the first component u = Nn* by the sweep method [15]. In the 
calculations we used DW(N)/D0 and n*(N) in accordance with Eqs. (6), (7), and (4), (8) with 
values of p* and T* that corresponded to the values of p and T in the experiments. The form 
of these relations is shown in Fig. i for specific p and T. The sweep method was used in 
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Fig. 4. Solutions of Eq. (17) using relations (4) 
and (8) from Fig. i (curves 2): a) distribution of N 
(mole fraction) along the capillary for the values 
of t': I) 0.0; 2) 0.26; 3) 1.02; 4) 5.1; 5) 10.2; b) 
dependence on time t' of the quantities: i) in N(t')- 
NI/(N 0 - NI); 2) in N(O, t') - NI/(N 0 - NI); 3) inu(0, 
t') - ul/(u 0 - ul); 4) solution of the linear equation 
(II) for DW/D0 m i and large times (for N(t')). 

two variants: one for solving Eq. (17) with relations (6) and (7), the other for solving it 
with relations (4) and (8). In the first case Eq. (17) was solved in accordance with an im- 
plicit six-point scheme with an improved order of accuracy [16], whose algorithm was adapted 
to the singularities of (17). For a difference grid with 40 nodes on the interval 0 J x' 
1 the scheme was stable at values of the grid parameter At'/(Ax') 2 ~ 3.2. In solving the 
problem, signs of instability of the difference scheme appeared only at &t'/(Ax') 2 ~ 16 
(waves). When model equations (4) and (8) were employed, Eq. (17) was solved in accordance 
with an implicit six-point scheme [15] with 20 nodes on the interval 0 < x' < 1 at values 
of At'/(Ax') 2 < 0.4. By means of (6) or (4) the solution u = N(x', t')-n*(N~x', t')) for 
given p* and T ~ was reduced at x' = 0 to the form in N(0, t') - NI/(N 0 - N l) versus t' or 
to the form in N(t') - NI/(N 0 - NI) versus t', which was used for analyzing the experimental 
curves for the purpose of determining the values of D W from their slope. In order to check 
the efficiency of the program, we solved a control problem of concentration relaxation on 
the interval from N o = 0.06 to N I = 0.02 mole fraction (T* = 0.99, p* = 1.04) under the con- 
dition DW/D0 ~ i (see Fig. 2a, b, broken curves). In this case Eq. (17) becomes the linear 
equation (ii) (but for the function u = n'N), for which the form of the solution for diffu- 
sion in a capillary is well known [3] (broken curve i, Fig. 2b). The function in N(0, t') - 
NI/(N 0 - N I) (broken curve 2) was obtained by conversion from u(0, t') using the dependence 
n*(N) (6) (see Fig. la, curve i). Thus, the effect of nonideality on the relaxation of N 
was taken into account solely in terms of the dependence of the density on the concentra- 
tion. The continuous curves in Figs. 2a, represent the solutions of Eq. (17) for the same 
conditions, but with allowance for the dependence of DW/D0 on N in accordance with (7) (see 
Fig. ib, curve i). A comparison of the broken and continuous curves in Fig. 2a, b reveals 
their similarity, though the latter reflect a slower process. The behavior of the continu- 
ous curve 1 (Fig. 2b) is influenced only by DW(N); the other continuous curves are influenced 
both by DW(N) and by n*(N), the latter having a more pronounced effect. D W can be correctly 
determined from the slope of experimental curves of type 2 if the behavior of n(N) in non- 
ideal solutions is known. 

The results of a numerical calculation of the diffusion process in a capillary for the 
same conditions and the same DW/D0 and n*(N) as in Fig. 2a, b, but on other intervals of N 
such that the variations of n* and DW/D0 on them are monotonic, are shown in Fig. 2c, d. 
The broken curves represent the solutions on the interval from N o = 0.08 to N I = 0.038 mole 
fraction (D W falls as N decreases, see Fig. ib), the continuous curves the solutions on the 
interval from N o = 0.036 to N l = 0.005 mole fraction (D W grows as N decreases, Fig. Ib). 
Despite the same p* and T*, curves 2 in Fig. 2d differ sharply from each other owing to the 
different intervals of variation of N. It should be noted that if an attempt is made to re- 
generate the values of DW/D0 used in solving Eq. (17) from the slope of curves 2 (at large 
times t' % i), as in the case of dilute solutions, erroneous values of DW/D0 are obtained 
(e.g., for the continuous curve 2, Fig. 2d, D W ~ 1.02 whereas the real variation is 0.2 < 
DW/D0 < 0.95; see Fig. ib, curve i). 
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TABLE 2. Ex2erimental Diffusion Data for a Ne-CO 2 Mixture and 
Values of D W Calculated from the Solutions of Eqs. (17), (4), and (8) 

No. T--Tc, K 

19 

4 
1,5 
0,1 

--0,3 
--0,3 

P--PQ, 

5,239 
4,335 
3,688 
2,847 
2,003 
1,809 
1,625 
1,625 

I No, 
mole% 

o o 

1,4 
1,2 
2,3 
2,3 
1,6 
3,1 

NI, 
hole % 

3,56 
3,57 
3,9 
4,2 
3,57 
3,57 
3,57 
3,57 

.P~,. te:xpt 
kg/m 3 lO~sec 

490 5 
490 8 
500 8 
490 15 
480 25 
490 80 
470 150 
470 150 

OeW~ I tcala 
lo -~ / ,  lO'se~ 

5,6 10 
4,0 
3,12 
2,0 508 
1,08 50 
0,48 50 
0,31 50 
0,31 50 

O~alc 
10 ~s m2/sec 

5,1 
4,5 
3,5 
1,9 
l ,2 
0,48 
0,40 
0,36 

In order to check the validity of neglecting the integral (14) in Eq. (15) from the solu- 
tions in Fig. 2c, d we obtained a numerical estimate of I, for which the derivative (82v~/ 
8N2)p,T was found from Eq. (6) with the same p* and T* as for DW/D0 . As the calculations 
showed, this derivative fluctuates sharply with a change of sign at values of N in the region 
of the minimum of DW/D0. 

The results of the numerical estimateof I (Fig. 3a) as compared with the principal term 
(DW/D0)Su/3x ' (Fig. 3b) of Eq. (15) on intervals of N with a monotonic variation of DW/D0 
show that both in magnitude and in rate of variation along the capillary the integral I is 
considerably less important than the principal term of (15), so that in this case neglecting 
the integral is justified. When calculating the diffusion process on an interval of N con- 
taining a minimum of D W (see Fig. Ib, curve I), it is not possible to obtain a numerical 
estimate of I (with a difference grid having 40 nodes with respect to the coordinate) with 
sufficient accuracy owing to the sharp variation of (82v*/SN2)D,T with N along the capillary. 
The same also applies to the calculation of the contributions to I as x + i (Fig. 3a, bro- 
ken curves) for 0.08 ~ N ~ 0.036 mole fraction, when at the open end of the capillary a large 
gradient ~N/Sx' is maintained (see Fig. 2c). In this case in order to achieve satisfactory 
accuracy in the calculation of I, in solving (17) the number of nodes of the difference grid 
on the interval 0 ~ x' ~ 1 must be substantially increased. 

The results of calculating the relaxation of the initial difference in N in the capillary 
from Eq. (17) using relations (4) and (8) for n * and (8~i/aN)p, T (Fig. 4) relate to the para- 
meters of experiment No. 7 in Table 2 (for N o < NI). With respect to time the process was 
calculated up to a value of t' an order greater than in the case of a Van der Waals mixture 
(see Fig. 2). The calculated curves i (N(t')), 2 (N(0, t')), 3 (u(0, t')) (Fig. 4b) have 
been plotted in the same semilogarithmic coordinates as in Fig. 2b, d. The straight lines 
drawn to the curves i, 2, and 3 have a slope corresponding to the values of DW/D0 in Fig. ib 
(curve 2) for the values of N(t') or N(0, t') reached at the time t' = I0. We note that for 
these process times the regenerated (from the slopes of curves I, 2, and 3) values of DW/D0, 
obtained within the limits of experimental error, are fairly close to the values of DW/D0 
used in the calculations, although small systematic deviations are still observed. In the 
same way, by means of Eqs. (17), (4), and (8) we calculated the diffusion processes in a 
Ne-CO 2 mixture with the parameters p, T, N o , and N I for which the experimental data on D W 
were obtained. The calculations were made for D o = 9.2-I0 -a m2/sec. The results are sum- 
marized in Table 2. As may be seen from the table, the agreement between the experimental 
values of D W and those calculated from the slope of the curves at large times is quite satis- 
factory. We also note that the behavior of the curves in Fig. 2b, d and Fig. 4b is ob- 
served when investigating the capillary diffusion processes in Ar-CO 2 [5], Ne-CO= [2], and 
4He-D2 [3] mixtures. 

Thus, the use, for these solutions, of equations of state (4) and (6) made it possible 
to reproduce with qualitative accuracy the principal features of the concentration relaxa- 
tion process in a nonideal solution above the phase surface and within a fairly wide neigh- 
borhood of the critical point, where an equation of state of the average field type is appli- 
cable. An analysis of the numerical solution of Eq. (17) for the boundary conditions of the 
capillary method on various intervals of variation of N made it possible to establish the 
important influence of the behavior of n*(N) on the curves obtained in the experiments. If 
this dependence is not taken into account, obtaining D W from the slope of the curve in semi- 
logarithmic coordinates may lead to incorrect values or to a substantial systematic error in 
the determination of D W. 
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In conclusion, we stress that these difficulties in describing diffusion in nonideal 
gases and the methods of overcoming them are not peculiar to the capillary method alone, 
i.e., to the case considered above. To some extent or another, they apply to all the known 
experimental methods, whatever the diffusion cell employed. We note that the method based 
on a capillary closed at one end and opening into a large volume of solution at constant 
concentration, temperature and pressure is the simplest for investigating the important as- 
pects of nonlinear isothermal diffusion. 

NOTATION 

N, concentration of the first component, mole fractions; p, pressure; T, temperature; 
n, molar density of the mixture; v = i/n, molar volume of the mixture; �9 = (T - Tc, T* = 
T/Tc, P* = P/Pc, n* = n/nc, v* = V/Vc, the index "c" denotes the values of the quantities 
at the critical point of the second component (CO2) ; ~i, chemical potential of the i-th 
component (i = i, 2); D W, interdiffusion coefficient; bl W, mobility of the first component, 
determined relative to the reference system moving with the number-average velocity of the 
solution W; rc, correlation radius; ~, critical exponent of the temperature dependence of 
rc; q, viscosity; Do, interdiffusion coefficient calculated from the Enskog-Chapman theory 
for the values of n and T in the real gas mixture; x, a coordinate; t, time; x' = x/L; t' = 
D0t/L2; L, length of the capillary; u = n'N; W* = WL/D0; N(t'), average concentration of 
the solution in the capillary; N(0, t'), concentration at the closed end of the capillary 
at time t'; No, composition of the mixture in the capillary at t' = 0; NI, concentration of 
the solution in the reservoir; Pl, mass density of the mixture in the reservoir; DWcalc , 
interdiffusion coefficient determined at large times from the slope of the in N(t') - NI/ 
(N o - N l) versus t' curves for solutions of (17). 
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